I mentioned the power of Wireshark display filters when analyzing 802.11 last year. Now I read Ephemeral Diffie Hellman support - NOT ! by the Unsniff guys and they tell me that they cannot decode SSL traffic which uses the ephemeral Diffie-Hellman cipher suite. I wonder what that looks like in traffic?
Thanks to Wireshark display filters, I can find a suitable packet. Here's a matching packet. You could use syntax like this with Tshark:
Maybe some of you crypto gurus can comment on their blog post -- is it possible to decrypt traffic if the cipher suite is TLS_DH_RSA_WITH_AES_256_CBC_SHA (0x0037) instead of TLS_DHE_RSA_WITH_AES_256_CBC_SHA (0x0039)? The cited perfect forward secrecy article says Diffie-Hellman provides PFS but isn't clear on the differences between plain DH and DHE (ephemeral).
tshark -V -n -r capture -R "ssl.handshake.ciphersuite == 0x39"
...edited...
Secure Socket Layer
TLSv1 Record Layer: Handshake Protocol: Server Hello
Content Type: Handshake (22)
Version: TLS 1.0 (0x0301)
Length: 74
Handshake Protocol: Server Hello
Handshake Type: Server Hello (2)
Length: 70
Version: TLS 1.0 (0x0301)
Random
gmt_unix_time: Jan 26, 2007 19:32:44.000000000
random_bytes: 76744E818415307EA6F7C14FAF4BA640F67834C1263E5065...
Session ID Length: 32
Session ID (32 bytes)
Cipher Suite: TLS_DHE_RSA_WITH_AES_256_CBC_SHA (0x0039)
Compression Method: null (0)
From what I read in Cryptography Decrypted, SSL/TLS uses Diffie-Hellman to create a shared pre-master secret key and six shared secret keys. Anonymous DH doesn't require either side to authenticate each other. Fixed or static DH exchanges public DH values using digital certs. Ephemeral DH exchanges public DH values signed with RSA or DSA keys. What does this mean for decryption using Wireshark, etc.? Thank you.
0 komentar:
Posting Komentar